Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking

Authors: Dulce, Soler; Tricia L, Humphreys; Stanley M, Spinola; James J, Campbell;

CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking

Abstract

The chemokine receptors (CCRs) CCR4 and CCR10, and the cutaneous lymphocyte antigen (CLA), have each been proposed as critical mediators of skin-specific TH lymphocyte homing in mice and humans. CLA initiates skin homing by mediating E-selectin–dependent tethering and rolling within cutaneous venules, but the specific roles of CCR4 and CCR10 are unclear. We have generated an antihuman CCR10 monoclonal antibody (mAb; 1B5) to illuminate the individual contributions of these molecules. This mAb allows us to compare CCR10, CCR4, and CLA expression within human THpopulations. The mAb 1B5 recognizes functional CCR10 expression, as chemotactic responsiveness to cutaneous T-cell–attracting chemokine (CTACK)/CCL27 (a CCR10 ligand) parallels the staining of TH subsets. We find CCR10 expressed by only a minority (approximately 30%) of blood-borne, skin-homing (CLA+/CCR4+) TH cells. However, essentially all members of the relatively small “effector” (CLA+/CCR4+/CD27−/CCR7−) skin-homing TH population express CCR10. Most skin-infiltrating lymphocytes in allergic delayed-type hypersensitivity (DTH) and bacterial chancroid skin lesions express both CCR4 and CLA, but only about 10% express CCR10. This suggests for the 2 models of TH skin homing studied here that CCR10+ TH cells have no advantage over other CLA+/CCR4+ TH cells in homing to cutaneous sites. We conclude that the skin-homing THcompartment is itself divided into distinct subpopulations, the smaller of which expresses both CCR4 and CCR10, and the larger of which expresses only CCR4. Thus, CCR10 is unlikely to be necessary for cutaneous homing of TH cells in the models studied here. CCR10 may instead play a role in the movement of specialized “effector” cutaneous TH cells to and/or within epidermal microenvironments.

Related Organizations
Keywords

Antigens, Differentiation, T-Lymphocyte, Lymphoma, B-Cell, Membrane Glycoproteins, Receptors, CCR4, Chemokine CCL27, Antibodies, Monoclonal, Receptors, CCR10, Immunophenotyping, Chancroid, Mice, Inbred C57BL, Chemotaxis, Leukocyte, Mice, Antigens, Neoplasm, Chemokines, CC, Animals, Humans, Hypersensitivity, Delayed, Leukocyte Rolling, Receptors, Chemokine, Immunologic Memory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    195
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
195
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!