
Abstract Genome-wide association studies offer an unbiased approach to identify new candidate genes for osteoporosis. We examined the Affymetrix 500K + 50K SNP GeneChip marker sets for associations with multiple osteoporosis-related traits at various skeletal sites, including bone mineral density (BMD, hip and spine), heel ultrasound, and hip geometric indices in the Framingham Osteoporosis Study. We evaluated 433,510 single-nucleotide polymorphisms (SNPs) in 2073 women (mean age 65 years), members of two-generational families. Variance components analysis was performed to estimate phenotypic, genetic, and environmental correlations (ρP, ρG, and ρE) among bone traits. Linear mixed-effects models were used to test associations between SNPs and multivariable-adjusted trait values. We evaluated the proportion of SNPs associated with pairs of the traits at a nominal significance threshold α = 0.01. We found substantial correlation between the proportion of associated SNPs and the ρP and ρG (r = 0.91 and 0.84, respectively) but much lower with ρE (r = 0.38). Thus, for example, hip and spine BMD had 6.8% associated SNPs in common, corresponding to ρP = 0.55 and ρG = 0.66 between them. Fewer SNPs were associated with both BMD and any of the hip geometric traits (eg, femoral neck and shaft width, section moduli, neck shaft angle, and neck length); ρG between BMD and geometric traits ranged from −0.24 to +0.40. In conclusion, we examined relationships between osteoporosis-related traits based on genome-wide associations. Most of the similarity between the quantitative bone phenotypes may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in defining the best phenotypes to be used in genetic studies of osteoporosis. © 2010 American Society for Bone and Mineral Research
Adult, Hip, Femur Neck, Genome, Human, Polymorphism, Single Nucleotide, Phenotype, Bone Density, Humans, Osteoporosis, Original Article, Female, Genome-Wide Association Study
Adult, Hip, Femur Neck, Genome, Human, Polymorphism, Single Nucleotide, Phenotype, Bone Density, Humans, Osteoporosis, Original Article, Female, Genome-Wide Association Study
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 56 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
