Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DataBank, Bodleian Libraries, University of Oxford
Doctoral thesis . 2011
License: rioxx All Rights Reserved
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of a potential vaccine against hyperinvasive serogroup B Neisseria meningitidis by assessment of the effects of surface-expressed Opacity-associated proteins on the immune system

Authors: Sadarangani, M;

Evaluation of a potential vaccine against hyperinvasive serogroup B Neisseria meningitidis by assessment of the effects of surface-expressed Opacity-associated proteins on the immune system

Abstract

Neisseria meningitidis causes 500,000 cases of meningitis and septicaemia annually worldwide, with a mortality rate of approximately 10%. Most disease in developed countries is caused by serogroup B infection, against which there is no universal vaccine. Opa proteins are major meningococcal outer membrane proteins, and a limited number of Opa variants have been associated with hyperinvasive serogroup B meningococci, suggesting their use as a potential novel vaccine. Immunisation of mice with recombinant Opa elicited high levels of meningococcal-specific serum bactericidal antibody (SBA), demonstrating proof in principle of this approach. Opa proteins mediate bacterial adherence to host cells and modulate human cellular immunity, and there are conflicting data regarding their effects on CD4⁺ T cells.opa genes from N. meningitidis strain H44/76 were cloned into the plasmid vector pBluescript, disrupted using antibiotic resistance cassettes and transformed into H44/76 to sequentially disrupt the four opa genes. This produced a unique panel of 15 isogenic Opa-deficient strains, including an Opa-negative strain, which enabled investigation of the immunomodulatory role of surface-expressed Opa proteins.There was no consistent effect of Opa expressed on the surface of OMVs and inactivated bacteria on CD4⁺ T cells, with significant heterogeneity of responses between individuals. The rate of Opa phase variation was between 10-3 and 10-4, and increased 180-fold following transformation of bacteria with unrelated DNA.These data support further investigation of Opa as a potential meningococcal vaccine component, and highlight the importance of host and bacterial factors in the development of OMV vaccines.

Country
United Kingdom
Keywords

Vaccinology, Medical Sciences, Disease prevention, FOS: Clinical medicine, Immunology, Infectious diseases, Meningitis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities