Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Journal
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance

Authors: Walsh, Sinead B.; Dolden, Tracey A.; Moores, Graham D.; Kristensen, Michael; id_orcid 0000-0001-7332-3490; Lewis, Terence; Devonshire, Alan L.; Williamson, Martin S.;

Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance

Abstract

Acetylcholinesterase (AChE) insensitive to organophosphate and carbamate insecticides has been identified as a major resistance mechanism in numerous arthropod species. However, the associated genetic changes have been reported in the AChE genes from only three insect species; their role in conferring insecticide insensitivity has been confirmed, using functional expression, only for those in Drosophila melanogaster. The housefly, Musca domestica, was one of the first insects shown to have this mechanism; here we report the occurrence of five mutations (Val-180 → Leu, Gly-262 → Ala, Gly-262 → Val, Phe-327 → Tyr and Gly-365 → Ala) in the AChE gene of this species that, either singly or in combination, confer different spectra of insecticide resistance. The baculovirus expression of wild-type and mutated housefly AChE proteins has confirmed that the mutations each confer relatively modest levels of insecticide insensitivity except the novel Gly-262 → Val mutation, which results in much stronger resistance (up to 100-fold) to certain compounds. In all cases the effects of mutation combinations are additive. The mutations introduce amino acid substitutions that are larger than the corresponding wild-type residues and are located within the active site of the enzyme, close to the catalytic triad. The likely influence of these substitutions on the accessibility of the different types of inhibitor and the orientation of key catalytic residues are discussed in the light of the three-dimensional structures of the AChE protein from Torpedo californica and D. melanogaster.

Related Organizations
Keywords

Insecticides, DNA, Complementary, carbamate, insect, insensitive AChE, organophosphate, Genotype, Protein Conformation, Torpedo, Polymerase Chain Reaction, Recombinant Proteins, Insecticide Resistance, Drosophila melanogaster, Organophosphorus Compounds, Amino Acid Substitution, Houseflies, Mutation, Acetylcholinesterase, Mutagenesis, Site-Directed, Animals, Carbamates, Cholinesterase Inhibitors, Baculoviridae, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    190
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
190
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!