<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1038/nn.2700
pmid: 21131955
Developmental axon pruning is a general mechanism that is required for maturation of neural circuits. During Drosophila metamorphosis, the larval-specific dendrites and axons of early γ neurons of the mushroom bodies are pruned and replaced by adult-specific processes. We found that the nuclear receptor ftz-f1 is required for this pruning, activates expression of the steroid hormone receptor EcR-B1, whose activity is essential for γ remodeling, and represses expression of Hr39, an ftz-f1 homologous gene. If inappropriately expressed in the γ neurons, HR39 inhibits normal pruning, probably by competing with endogenous FTZ-F1, which results in decreased EcR-B1 expression. EcR-B1 was previously identified as a target of the TGFβ signaling pathway. We found that the ftz-f1 and Hr39 pathway apparently acts independently of TGFβ signaling, suggesting that EcR-B1 is the target of two parallel molecular pathways that act during γ neuron remodeling.
Neurons, Receptors, Steroid, Metamorphosis, Biological, Gene Expression Regulation, Developmental, Development, DNA-Binding Proteins, Animals, Drosophila Proteins, genetics, Drosophila, Mutant Proteins, Mushroom Bodies, Transcription Factors
Neurons, Receptors, Steroid, Metamorphosis, Biological, Gene Expression Regulation, Developmental, Development, DNA-Binding Proteins, Animals, Drosophila Proteins, genetics, Drosophila, Mutant Proteins, Mushroom Bodies, Transcription Factors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |