Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
Circulation
Article . 2007 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aldosterone-Induced Coronary Dysfunction in Transgenic Mice Involves the Calcium-Activated Potassium (BKCa) Channels of Vascular Smooth Muscle Cells

Authors: Marie-Lory, Ambroisine; Julie, Favre; Patricia, Oliviero; Camille, Rodriguez; Ji, Gao; Christian, Thuillez; Jane-Lise, Samuel; +2 Authors

Aldosterone-Induced Coronary Dysfunction in Transgenic Mice Involves the Calcium-Activated Potassium (BKCa) Channels of Vascular Smooth Muscle Cells

Abstract

Background— Cardiomyocyte-specific overexpression of aldosterone synthase in male (MAS) mice induces a nitric oxide–independent coronary dysfunction. Because calcium-activated potassium (BKCa) channels are essential for vascular smooth muscle cell (VSMC) relaxation, we hypothesized that aldosterone alters their expression and/or function in VSMCs. Methods and Results— Left coronary artery segments were isolated from MAS or male wild-type mice and mounted in a wire myograph. Responses to acetylcholine were assessed (in the presence of a nitric oxide synthase inhibitor) without or with the cyclooxygenase inhibitor diclofenac, the KCa inhibitors charybdotoxin plus apamin, or the BKCa inhibitor iberiotoxin. Expression of BKCa was quantified in hearts by real-time quantitative polymerase chain reaction and Western blot and in isolated coronary arteries by polymerase chain reaction. The effect of aldosterone on BKCa expression also was studied in cultured rat aortic VSMCs. Acetylcholine-mediated coronary relaxation was markedly decreased in MAS mice and was prevented by spironolactone. Diclofenac did not affect the MAS-induced impairment in the responses to acetylcholine, whereas charybdotoxin plus apamin virtually abolished the relaxation in both male wild-type and MAS mice. After iberiotoxin, relaxation to acetylcholine was decreased to a larger extent in male wild-type than in MAS, leading to similar levels of relaxation. BKCa-α and -β1 subunit expressions were significantly decreased in MAS heart and coronary arteries. In cultured VSMCs, aldosterone induced a concentration-dependent decrease in BKCa expression, which was prevented by spironolactone. Conclusions— Aldosterone overexpression altered VSMC BKCa expression and coronary BKCa-dependent relaxation. The resulting alteration of relaxing responses may contribute to the deleterious effects of aldosterone in cardiovascular diseases. BKCa channels may therefore be useful therapeutic targets in cardiovascular diseases.

Related Organizations
Keywords

Male, Myocytes, Smooth Muscle, Coronary Disease, Mice, Transgenic, Muscle, Smooth, Vascular, Vasodilation, Mice, Potassium Channels, Calcium-Activated, Animals, Aldosterone, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
bronze