Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae.

Authors: William Wickner; Barbara Conradt; Thomas A. Vida; Janet M. Shaw; Scott D. Emr;

In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae.

Abstract

Vacuole inheritance is temporally coordinated with the cell cycle and is restricted spatially to an axis between the maternal vacuole and the bud. The new bud vacuole is founded by a stream of vacuole-derived membranous vesicles and tubules which are transported from the mother cell into the bud to form the daughter organelle. We now report in vitro formation of vacuole-derived tubules and vesicles. In semi-intact cells, formation of tubulovesicular structures requires ATP and the proteins encoded by VAC1 and VAC2, two genes which are required for vacuole inheritance in vivo. Isolation of vacuoles from cell lysates before in vitro incubation reveals that formation of tubulovesicular structures requires cytosol as well as ATP. After forming tubulovesicular structures, isolated vacuoles subsequently increase in size. Biochemical assays reveal that this increase results from vacuole to vacuole fusion, leading to mixing of organellar contents. Intervacuolar fusion is sensitive to the phosphatase inhibitors microcystin-LR and okadaic acid, suggesting that protein phosphorylation/dephosphorylation reactions play a role in this event.

Related Organizations
Keywords

Hot Temperature, Saccharomyces cerevisiae Proteins, Dose-Response Relationship, Drug, Microcystins, Extrachromosomal Inheritance, Cathepsin A, Carboxypeptidases, Saccharomyces cerevisiae, Spheroplasts, Membrane Fusion, Peptides, Cyclic, Adenosine Triphosphate, Cytosol, Ethers, Cyclic, Okadaic Acid, Vacuoles, Phosphoprotein Phosphatases, Marine Toxins, Cell Division, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 10%
Top 10%
Top 10%
bronze