Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2013 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RG7116, a Therapeutic Antibody That Binds the Inactive HER3 Receptor and Is Optimized for Immune Effector Activation

Authors: Christian, Mirschberger; Christian B, Schiller; Michael, Schräml; Nikolaos, Dimoudis; Thomas, Friess; Christian A, Gerdes; Ulrike, Reiff; +6 Authors

RG7116, a Therapeutic Antibody That Binds the Inactive HER3 Receptor and Is Optimized for Immune Effector Activation

Abstract

Abstract The EGF receptor (EGFR) HER3 is emerging as an attractive cancer therapeutic target due to its central position in the HER receptor signaling network. HER3 amplifies phosphoinositide 3-kinase (PI3K)–driven tumorigenesis and its upregulation in response to other anti-HER therapies has been implicated in resistance to them. Here, we report the development and characterization of RG7116, a novel anti-HER3 monoclonal antibody (mAb) designed to block HER3 activation, downregulate HER3, and mediate enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) via glycoengineering of the Fc moiety. Biochemical studies and X-ray crystallography revealed that RG7116 bound potently and selectively to domain 1 of human HER3. Heregulin binding was prevented by RG7116 at concentrations more than 1 nmol/L as was nearly complete inhibition of HER3 heterodimerization and phosphorylation, thereby preventing downstream AKT phosphorylation. In vivo RG7116 treatment inhibited xenograft tumor growth up to 90% relative to controls in a manner accompanied by downregulation of cell surface HER3. RG7116 efficacy was further enhanced in combination with anti-EGFR (RG7160) or anti-HER2 (pertuzumab) mAbs. Furthermore, the ADCC potency of RG7116 was enhanced compared with the nonglycoengineered parental antibody, both in vitro and in orthotopic tumor xenograft models, where an increased median survival was documented. ADCC degree achieved in vitro correlated with HER3 expression levels on tumor cells. In summary, the combination of strong signaling inhibition and enhanced ADCC capability rendered RG7116 a highly potent HER3-targeting agent suitable for clinical development. Cancer Res; 73(16); 5183–94. ©2013 AACR.

Keywords

Mice, Inbred BALB C, Receptor, ErbB-3, Receptor, ErbB-2, Down-Regulation, Mice, Nude, Mice, SCID, Antibodies, Monoclonal, Humanized, Crystallography, X-Ray, Xenograft Model Antitumor Assays, Mice, Cell Line, Tumor, MCF-7 Cells, Animals, Humans, Female, Phosphorylation, Proto-Oncogene Proteins c-akt, Cell Proliferation, Glycoproteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 10%
Top 10%
bronze