Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Local-Encoding-Preserving Secure Network Coding---Part I: Fixed Security Level

Authors: Xuan Guang; Raymond W. Yeung; Fang-Wei Fu 0001;

Local-Encoding-Preserving Secure Network Coding---Part I: Fixed Security Level

Abstract

Information-theoretic security is considered in the paradigm of network coding in the presence of wiretappers, who can access one arbitrary edge subset up to a certain size, also referred to as the security level. Secure network coding is applied to prevent the leakage of the source information to the wiretappers. In this two-part paper, we consider the problem of secure network coding when the information rate and the security level can change over time. In the current paper (i.e., Part I of the two-part paper), we focus on the problem for a fixed security level and a flexible rate. To efficiently solve this problem, we put forward local-encoding-preserving secure network coding, where a family of secure linear network codes (SLNCs) is called local-encoding-preserving if all the SLNCs in this family share a common local encoding kernel at each intermediate node in the network. We present an efficient approach for constructing upon an SLNC that exists a local-encoding-preserving SLNC with the same security level and the rate reduced by one. By applying this approach repeatedly, we can obtain a family of local-encoding-preserving SLNCs with a fixed security level and multiple rates. We also develop a polynomial-time algorithm for efficient implementation of this approach. Furthermore, it is proved that the proposed approach incurs no penalty on the required field size for the existence of SLNCs in terms of the best known lower bound by Guang and Yeung. The result in this paper will be used as a building block for efficiently constructing a family of local-encoding-preserving SLNCs for all possible pairs of rate and security level, which will be discussed in the companion paper (i.e., Part II of the two-part paper).

32 pages

Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green