
doi: 10.1002/jgt.21641
AbstractA proper edge coloring of a graph is said to be acyclic if any cycle is colored with at least three colors. An edge-list L of a graph G is a mapping that assigns a finite set of positive integers to each edge of G. An acyclic edge coloring ϕ of G such that for any is called an acyclic L-edge coloring of G. A graph G is said to be acyclically k-edge choosable if it has an acyclic L‐edge coloring for any edge‐list L that satisfies for each edge e. The acyclic list chromatic index is the least integer k such that G is acyclically k‐edge choosable. We develop techniques to obtain bounds for the acyclic list chromatic indices of outerplanar graphs, subcubic graphs, and subdivisions of Halin graphs.
outerplanar graph, Coloring of graphs and hypergraphs, acyclic list chromatic index, acyclic edge coloring, subcubic graph, halin graph, Planar graphs; geometric and topological aspects of graph theory
outerplanar graph, Coloring of graphs and hypergraphs, acyclic list chromatic index, acyclic edge coloring, subcubic graph, halin graph, Planar graphs; geometric and topological aspects of graph theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
