
pmid: 8441325
The venom of the Eastern green mamba from Africa, Dendroaspis angusticeps, contains a number of toxins which block the binding of 3H-antagonists to genetically-defined m1 and m4 muscarinic acetylcholine receptors. Most of the anti-muscarinic activity of the venom is due to the presence of a newly-isolated toxin, "m1-toxin", which has 64 amino acids and a molecular mass of 7361 Daltons. At present m1-toxin is the only ligand which is known to be capable of fully blocking m1 receptors without affecting m2-m5 receptors. It binds very rapidly, specifically and pseudoirreversibly to the extracellular face of m1 receptors on cells, in membranes or in solution, whether or not the primary receptor site is occupied by an antagonist. Bound toxin can either prevent the binding and action of agonists or antagonists, or prevent the dissociation of antagonists. The toxin is useful for identifying m1 receptors during anatomical and functional studies, for recognizing and stabilizing receptor complexes, and for occluding m1 receptors so that other receptors are more readily studied.
Elapid Venoms, Cricetinae, Neurotoxins, Animals, CHO Cells, Muscarinic Antagonists, Ligands, Acetylcholine
Elapid Venoms, Cricetinae, Neurotoxins, Animals, CHO Cells, Muscarinic Antagonists, Ligands, Acetylcholine
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
