
Abstract The taxonomic analysis of sequencing data has become important in many areas of life sciences. However, currently available tools for that purpose either consume large amounts of RAM or yield insufficient quality and robustness. Here, we present kASA, a k-mer based tool capable of identifying and profiling metagenomic DNA or protein sequences with high computational efficiency and a user-definable memory footprint. We ensure both high sensitivity and precision by using an amino acid-like encoding of k-mers together with a range of multiple k’s. Custom algorithms and data structures optimized for external memory storage enable a full-scale taxonomic analysis without compromise on laptop, desktop, and HPCC.
Sequence Analysis, Protein, Methods Online, Metagenomics, Sequence Analysis, DNA, Algorithms
Sequence Analysis, Protein, Methods Online, Metagenomics, Sequence Analysis, DNA, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
