Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Death and Disea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Death and Disease
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Death and Disease
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
versions View all 3 versions
addClaim

Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel

Authors: Yuan, Yue; Zhao, Jing; Gong, Yongtai; Wang, Dingyu; Wang, Xiaoyu; Yun, Fengxiang; Liu, Zhaorui; +7 Authors

Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel

Abstract

AbstractAutophagy, a bidirectional degradative process extensively occurring in eukaryotes, has been revealed as a potential therapeutic target for several cardiovascular diseases. However, its role in atrial fibrillation (AF) remains largely unknown. This study aimed to determine the role of autophagy in atrial electrical remodeling under AF condition. Here, we reported that autophagic flux was markedly activated in atria of persistent AF patients and rabbit model of atrial rapid pacing (RAP). We also observed that the key autophagy-related gene7 (ATG7) significantly upregulated in AF patients as well as tachypacing rabbits. Moreover, lentivirus-mediated ATG7 knockdown and overexpression in rabbits were employed to clarify the effects of autophagy on atrial electrophysiology via intracardiac operation and patch-clamp experiments. Lentivirus-mediated ATG7 knockdown or autophagy inhibitor chloroquine (CQ) restored the shortened atrial effective refractory period (AERP) and alleviated the AF vulnerability caused by tachypacing in rabbits. Conversely, ATG7 overexpression significantly promoted the incidence and persistence of AF and decreased L-type calcium channel (Cav1.2 α-subunits), along with abbreviated action potential duration (APD) and diminished L-type calcium current (ICa,L). Furthermore, the co-localization and interaction of Cav1.2 with LC3B-positive autophagosomes enhanced when autophagy was activated in atrial myocytes. Tachypacing-induced autophagic degradation of Cav1.2 required ubiquitin signal through the recruitment of ubiquitin-binding proteins RFP2 and p62, which guided Cav1.2 to autophagosomes. These findings suggest that autophagy induces atrial electrical remodeling via ubiquitin-dependent selective degradation of Cav1.2 and provide a novel and promising strategy for preventing AF development.

Related Organizations
Keywords

Male, Patch-Clamp Techniques, Calcium Channels, L-Type, Ubiquitin, Action Potentials, Atrial Remodeling, Middle Aged, Autophagy-Related Protein 7, Article, Atrial Fibrillation, Autophagy, Animals, Humans, Female, Myocytes, Cardiac, Heart Atria, Rabbits

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 1%
Top 10%
Top 10%
Green
gold