Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A crucial role in cell spreading for the interaction of Abl PxxP motifs with Crk and Nck adaptors

Authors: Bruce J. Mayer; Kalle Saksela; Gonzalo M. Rivera; Susumu Antoku;

A crucial role in cell spreading for the interaction of Abl PxxP motifs with Crk and Nck adaptors

Abstract

The dynamic reorganization of actin structures helps to mediate the interaction of cells with their environment. The Abl non-receptor tyrosine kinase can modulate actin rearrangement during cell attachment. Here we report that the Abl PxxP motifs, which bind Src homology 3 (SH3) domains, are indispensable for the coordinated regulation of filopodium and focal adhesion formation and cell-spreading dynamics during attachment. Candidate Abl PxxP-motif-binding partners were identified by screening a comprehensive SH3-domain phage-display library. A combination of protein overexpression, silencing, pharmacological manipulation and mutational analysis demonstrated that the PxxP motifs of Abl exert their effects on actin organization by two distinct mechanisms, involving the inhibition of Crk signaling and the engagement of Nck. These results uncover a previously unappreciated role for Abl PxxP motifs in the regulation of cell spreading.

Keywords

Mice, Knockout, Oncogene Proteins, rac1 GTP-Binding Protein, Focal Adhesions, Amino Acid Motifs, Cell Membrane, Fibroblasts, Proto-Oncogene Proteins c-crk, Enzyme Activation, src Homology Domains, Mice, Cell Adhesion, NIH 3T3 Cells, Animals, Humans, Pseudopodia, Proto-Oncogene Proteins c-abl, Cells, Cultured, Adaptor Proteins, Signal Transducing, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
bronze