
arXiv: 2012.04882
The successful emotional conversation system depends on sufficient perception and appropriate expression of emotions. In a real-life conversation, humans firstly instinctively perceive emotions from multi-source information, including the emotion flow hidden in dialogue history, facial expressions, audio, and personalities of speakers. Then, they convey suitable emotions according to their personalities, but these multiple types of information are insufficiently exploited in emotional conversation fields. To address this issue, in this paper, we propose a heterogeneous graph-based model for emotional conversation generation. Firstly, we design a Heterogeneous Graph-Based Encoder to represent the conversation content (i.e., the dialogue history, its emotion flow, facial expressions, audio, and speakers' personalities) with a heterogeneous graph neural network, and then predict suitable emotions for feedback. Secondly, we employ an Emotion-Personality-Aware Decoder to generate a response relevant to the conversation context as well as with appropriate emotions, through taking the encoded graph representations, the predicted emotions by the encoder and the personality of the current speaker as inputs. Experiments on both automatic and human evaluation show that our method can effectively perceive emotions from multi-source knowledge and generate a satisfactory response. Furthermore, based on the up-to-date text generator BART, our model still can achieve consistent improvement, which significantly outperforms some existing state-of-the-art models.
Accepted at Artificial Intelligence as an extension of the AAAI conference version
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
