
AbstractRod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal ‘no light detected’ they release glutamate continually to activate post-synaptic receptors, and when light is detected glutamate release pauses. How a rod’s individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild type and ribbonless (RIBEYE-ko) rods. Wild type rods created a readily releasable pool (RRP) of 92 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ < 0.4 msec. Lowering intracellular Ca2+-buffering accelerated Cavchannel opening and facilitated release kinetics, but RRP size was unaltered. In contrast, ribbonless rods created an RRP of 24 SVs, and lacked Cavchannel facilitation; however, Ca2+channel-release coupling remained tight. The release deficits caused a sharp attenuation of rod-driven light responses measured from RIBEYE-ko mice. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
