Downloads provided by UsageCounts
Biometrics innovation has ended up being a precise and proficient response to the security issue. Biometrics is a developing field of research as of late and has been dedicated to the distinguishing proof or authentication of people utilizing one or multiple inherent physical or behavioural characteristics. The unique fingerprint traits of a man are exceptionally exact and are special to a person. Authentication frameworks in light of unique fingerprints have demonstrated to create low false acceptance rate and false rejection rate, alongside other favourable circumstances like simple and easy usage strategy. But the modern study reveals that fingerprint is not so secured like secured passwords which consist of alphanumeric characters, number and special characters. Fingerprints are left at crime places, on materials or at the door which is usually class of latent fingerprints. We cannot keep fingerprint as secure like rigid passwords. In this paper, we discuss fingerprint image Hash code generation based on the Euclidean distance calculated on the binary image. Euclidean distance on a binary image is the distance from every pixel to the nearest neighbour pixel which is having bit value one. Hashcode alone not sufficient for Verification or Authentication purpose, but can work along with Multifactor security model or it is half secured. To implement Hash code generation we use MATLAB2015a. This study shows how fingerprints Hash code uniquely identifies a user or acts as index-key or identity-key.
Fingerprint image, Fingerprint hashcode, Authentication, Multifactor authentication model, Euclidean distance.
Fingerprint image, Fingerprint hashcode, Authentication, Multifactor authentication model, Euclidean distance.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 6 | |
| downloads | 7 |

Views provided by UsageCounts
Downloads provided by UsageCounts