Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2004 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Generation of Dopaminergic Neurons by Human Neural Stem Cells Is Enhanced by Bcl-XL, BothIn VitroandIn Vivo

Authors: Alberto Martínez-Serrano; Elisa García-García; Isabel Liste;

The Generation of Dopaminergic Neurons by Human Neural Stem Cells Is Enhanced by Bcl-XL, BothIn VitroandIn Vivo

Abstract

Progress in stem cell biology research is enhancing our ability to generate specific neuron types for basic and applied studies and to design new treatments for neurodegenerative diseases. In the case of Parkinson's disease (PD), alternative human dopaminergic (DAergic) neurons other than primary fetal tissue do not yet exist. One possible source could be human neural stem cells (hNSCs), although the yield in DAergic neurons and their survival are very limited.In this study, we found that Bcl-XLenhances (one-to-two orders of magnitude) the capacity for spontaneous dopaminergic differentiation of hNSCs, which then exceeds that of cultured human ventral mesencephalic tissue. Bcl-XLalso enhanced total neuron generation by hNSCs, but to a lower extent. Neuronal phenotypes other than DA were not affected by Bcl-XL, indicating an exquisitely specific effect on DAergic neurons.In vivo, grafts of Bcl-XL-overexpressing hNSCs do generate surviving human TH+neurons in the adult rat 6-OH-dopamine lesioned striatum, something never seen when naive hNSCs were transplanted. Most of the data obtained here in terms of the effects of Bcl-XLare consistent with an enhanced survival type of mechanism and not supportive of induction, specification, or proliferation of DAergic precursors.From thisin vitroandin vivoevidence, we conclude that enhancing Bcl-XLexpression is important to obtain human DAergic neurons from hNSCs. These findings may facilitate the development of drug-screening and cell-replacement activities to discover new therapeutic strategies for PD.

Keywords

Neurons, Cell Survival, Brain-Derived Neurotrophic Factor, Dopamine, Graft Survival, Apoptosis, Cell Differentiation, Nerve Tissue Proteins, Corpus Striatum, Oxidative Stress, Phenotype, Prosencephalon, Mesencephalon, Animals, Humans, Female, Glial Cell Line-Derived Neurotrophic Factor, Nerve Growth Factors, Oxidopamine, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%
hybrid