
G-protein coupled receptors (GPCRs) constitute major drug targets due to their involvement in critical biological functions and pathophysiological disorders. The leading challenge in their structural and functional characterization has been the need for a lipid environment to accommodate their hydrophobic cores. Here, we report an antibody scaffold mimetic (ASM) platform where we have recapitulated the extracellular functional domains of the GPCR, C-X-C chemokine receptor 4 (CXCR4) on a soluble antibody framework. The engineered ASM molecule can accommodate the N-terminal loop and all three extracellular loops of CXCR4. These extracellular features are important players in ligand recruitment and interaction for allostery and signal transduction. Our study shows that ASMCXCR4 can be recognized by the anti-CXCR4 antibodies, MEDI3185, 2B11, and 12G5, and that ASMCXCR4 can bind the HIV-1 glycoprotein ligand gp120, and the natural chemokine ligand SDF-1α. Further, we show that ASMCXCR4 can competitively inhibit the SDF-1α signaling pathway, and be used as an immunogen to generate CXCR4-specific antibodies. This platform will be useful in the study of GPCR biology in a soluble receptor context for evaluating its extracellular ligand interactions.
Receptors, CXCR4, Protein Conformation, HIV Envelope Protein gp120, Ligands, Protein Engineering, Antibodies, Chemokine CXCL12, Receptors, G-Protein-Coupled, HEK293 Cells, Biomimetics, Humans, Protein Binding, Signal Transduction
Receptors, CXCR4, Protein Conformation, HIV Envelope Protein gp120, Ligands, Protein Engineering, Antibodies, Chemokine CXCL12, Receptors, G-Protein-Coupled, HEK293 Cells, Biomimetics, Humans, Protein Binding, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
