Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Twin Research and Hu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Twin Research and Human Genetics
Article . 2013 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Twin Research and Human Genetics
Article . 2013
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Statistical Analyses of Monozygotic and Dizygotic Twinning Rates

Authors: Fellman Johan;

Statistical Analyses of Monozygotic and Dizygotic Twinning Rates

Abstract

The French mathematician Bertillon reasoned that the number of dizygotic (DZ) pairs would equal twice the number of twin pairs of unlike sexes. The remaining twin pairs in a sample would presumably be monozygotic (MZ). Weinberg restated this idea and the calculation has come to be known as Weinberg's differential rule (WDR). The keystone of WDR is that DZ twin pairs should be equally likely to be of the same or the opposite sex. Although the probability of a male birth is greater than .5, the reliability of WDR's assumptions has never been conclusively verified or rejected. Let the probability for an opposite-sex (OS) twin maternity be pO, for a same-sex (SS) twin maternity pS and, consequently, the probability for other maternities 1 − pS − pO. The parameter estimates $\hat p_O$ and $\hat p_S$ are relative frequencies. Applying WDR, the MZ rate is m = pS − pO and the DZ rate is d = 2pO, but the estimates $\hat m$ and $\hat d$ are not relative frequencies. The maximum likelihood estimators $\hat p_S$ and $\hat p_O$ are unbiased, efficient, and asymptotically normal. The linear transformations $\hat m = \hat p_S - \hat p_O$ and ${\skew6\hat d} = 2\hat p_O$ are efficient and asymptotically normal. If WDR holds they are also unbiased. For the tests of a set of m and d rates, contingency tables cannot be used. Alternative tests are presented and the models are applied on published data.

Related Organizations
Keywords

Male, ta112, Models, Genetic, Twins, Monozygotic, Nonlinear Dynamics, Twins, Dizygotic, Humans, Female, Sex Ratio, ta512, Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!