Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Journal
Article . 1994 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neutrophil lysosomal dysfunctions in mutant C57 Bl/6J mice: interstrain variations in content of lysosomal elastase, cathepsin G and their inhibitors

Authors: Gardi, C.; Cavarra, E.; Calzoni, P.; Marcolongo, P.; de Santi, M. M.; Martorana, P. A.; Lungarella, G.;

Neutrophil lysosomal dysfunctions in mutant C57 Bl/6J mice: interstrain variations in content of lysosomal elastase, cathepsin G and their inhibitors

Abstract

In this paper we report the serum antiprotease screening and the biochemical and functional characteristics of neutrophils in a variety of mouse strains with different susceptibilities for developing a protease-mediated injury. C57Bl/6J mice and their mutants tight-skin and pallid have a lower serum elastase inhibitory capacity (-30, -65 and -70% respectively) than other inbred strains (i.e. NMRI and Balb/c, which both have similar values). We demonstrate that these values are a consequence of a decreased concentration of the alpha 1-protease inhibitor for elastase [PI(E)], which is the major serum inhibitor of elastase and cathepsin G. In addition, neutrophil lysosomal dysfunctions characterized by abnormally high contents of elastase and cathepsin G, or defective lysosomal secretion are observed in tight-skin and pallid mice respectively. Another C57Bl/6J mutant with lysosomal abnormalities is the beige mouse. Negligible amounts of elastase and cathepsin G, as well as defective neutrophil degranulation, have been described previously in this strain. We found, however, discrete amounts of a latent form of neutrophil elastase that undergoes a spontaneous activation by a protease-dependent mechanism. We also report that neutrophil cathepsin G in this mouse is tightly bound to lysosomal membranes, but is released in near normal quantities during exocytosis. Cytosolic elastase and cathepsin G inhibitors, which were previously reported as being specific for the beige neutrophils, have also been detected in all the examined strains. Neutrophil functions, lysosomal enzyme content and serum antiprotease screening may represent key elements in the protease-antiprotease balance and may explain the different interstrain susceptibility to developing lesions in which an elastolytic activity has been implicated.

Related Organizations
Keywords

Male, Cathepsin G, Pancreatic Elastase, Neutrophils, Molecular Sequence Data, Serine Endopeptidases, Mice, Inbred Strains, Cathepsins, Mice, Microscopy, Electron, Cytosol, Species Specificity, Superoxides, Mutation, Animals, Electrophoresis, Polyacrylamide Gel, Protease Inhibitors, Amino Acid Sequence, Leukocyte Elastase, Lysosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Average
Top 10%
Top 10%
bronze