Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cancer The...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer Therapeutics
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Overexpression of Mitotic Centromere–Associated Kinesin Stimulates Microtubule Detachment and Confers Resistance to Paclitaxel

Authors: Fernando Cabral; Anutosh Ganguly; Hailing Yang;

Overexpression of Mitotic Centromere–Associated Kinesin Stimulates Microtubule Detachment and Confers Resistance to Paclitaxel

Abstract

Abstract Numerous studies have implicated mutations in tubulin or the overexpression of specific tubulin genes in resistance to microtubule-targeted drugs. Much less is known about the role of accessory proteins that modulate microtubule behavior in the genesis of drug resistance. Here, we examine mitotic centromere–associated kinesin (MCAK), a member of the kinesin family of microtubule motor proteins that has the ability to stimulate microtubule depolymerization, and show that overexpressing the protein confers resistance to paclitaxel and epothilone A, but increases sensitivity to colcemid. Cells transfected with FLAG-tagged MCAK cDNA using a tet-off–regulated expression system had a disrupted microtubule cytoskeleton and were able to survive a toxic concentration of paclitaxel in the absence, but not in the presence of tetracycline, showing that drug resistance was caused by ectopic MCAK production. Moreover, a population that was heterogeneous with respect to FLAG-MCAK expression became enriched with cells that produced the ectopic protein when it was placed under paclitaxel selection. Similar to previously isolated mutants with altered tubulin, paclitaxel resistant cells resulting from MCAK overexpression were found to have decreased microtubule polymer and a seven-fold increase in the frequency of microtubule detachment from centrosomes. These data are consistent with a model for paclitaxel resistance that is based on stability of the attachment of microtubules to their nucleating centers, and they implicate MCAK in the mechanism of microtubule detachment. Mol Cancer Ther; 10(6); 929–37. ©2011 AACR.

Related Organizations
Keywords

Centrosome, DNA, Complementary, Paclitaxel, Demecolcine, Drug Resistance, Kinesins, CHO Cells, Transfection, Microtubules, Tubulin Modulators, Cricetulus, Epothilones, Tubulin, Cricetinae, Mutation, Animals, Peptides, Oligopeptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research