Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Monomeric 14-3-3 Protein Is Sufficient to Modulate the Activity of the Drosophila Slowpoke Calcium-dependent Potassium Channel

Authors: Yi, Zhou; Smitha, Reddy; Heather, Murrey; Hong, Fei; Irwin B, Levitan;

Monomeric 14-3-3 Protein Is Sufficient to Modulate the Activity of the Drosophila Slowpoke Calcium-dependent Potassium Channel

Abstract

Drosophila 14-3-3zeta (D14-3-3zeta) modulates the activity of the Slowpoke calcium-dependent potassium channel (dSlo) by interacting with the dSlo binding protein, Slob. We show here that D14-3-3zeta forms dimers in vitro. Site-directed mutations in its putative dimerization interface result in a dimerization-deficient form of D14-3-3zeta. Both the wild-type and dimerization-deficient forms of D14-3-3zeta bind to Slob with similar affinity and form complexes with dSlo. When dSlo and Slob are expressed in mammalian cells, the dSlo channel activity is similarly modulated by co-expression of either the wild-type or the dimerization-deficient form of D14-3-3zeta. In addition, dSlo is still modulated by wild-type D14-3-3zeta in the presence of a 14-3-3 mutant, which does not itself bind to Slob but forms heterodimers with the wild-type 14-3-3. These data, taken together, suggest that monomeric D14-3-3zeta is capable of modulating dSlo channel activity in this regulatory complex.

Related Organizations
Keywords

Potassium Channels, Calcium-Activated, 14-3-3 Proteins, Tyrosine 3-Monooxygenase, Molecular Sequence Data, Animals, Drosophila Proteins, Drosophila, Amino Acid Sequence, Large-Conductance Calcium-Activated Potassium Channels, Dimerization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
gold