Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Medulloblastomas Expressing IL13Rα2 are Targets for IL13-zetakine+ Cytolytic T Cells

Authors: Michael J, Stastny; Christine E, Brown; Christopher, Ruel; Michael C, Jensen;

Medulloblastomas Expressing IL13Rα2 are Targets for IL13-zetakine+ Cytolytic T Cells

Abstract

Central nervous system loco-regional disease relapse is a common etiology of treatment failure for medulloblastoma (MB)/primitive neuroectodermal tumors. Therapeutic targeting of primary disease and the adjacent craniospinal cerebral spinal fluid pathways should decrease relapse rates and allow for the curtailed use of radiation therapy. The adoptive transfer of tumor-specific cytolytic T cells (CTLs) to the tumor bed and cerebral spinal fluid is an attractive strategy, but limited in its clinical application owing to the paucity of defined antigens consistently expressed by these tumors and their potential to escape T-cell recognition by expressing low level surface human leukocyte antigen. Here, we describe the human leukocyte antigen-independent recognition of MB cell-surface IL13Ralpha2 by genetically modified CTLs expressing an IL13-zetakine chimeric immunoreceptor. We found that IL13-zetakine+ CTLs exhibit potent cytolytic activity toward IL13Ralpha2 Daoy cells, and are activated to secrete proinflammatory cytokines such as interferon-gamma. By employing an orthotopic NOD-scid murine model in which intraventricularly seeded Daoy cells form tumors on leptomeningeal surfaces, regression of established ffLuc+ Daoy xenografts in response to intraventricularly delivered IL13-zetakine+ CD8+ CTLs was observed using biophotonic imaging. These studies support the rationale for exploring the clinical utility of targeted immunotherapy using adoptively transferred IL13-zetakine redirected CTLs as a therapeutic component for treating IL13Ralpha2+ MB/primitive neuroectodermal tumors.

Related Organizations
Keywords

Receptors, Interleukin-13, Epitopes, T-Lymphocyte, Mice, SCID, Flow Cytometry, Lymphocyte Activation, Transfection, Immunotherapy, Adoptive, Xenograft Model Antitumor Assays, Immunophenotyping, Survival Rate, Mice, Mice, Inbred NOD, Cell Line, Tumor, Interleukin-13 Receptor alpha2 Subunit, Animals, Humans, Female, Cerebellar Neoplasms, Medulloblastoma, T-Lymphocytes, Cytotoxic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!