Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Hypothesesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Hypotheses
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging

Authors: Cheng, Luo; Egon, Urgard; Tõnu, Vooder; Andres, Metspalu;

The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging

Abstract

Oxidative stress and inflammation are constant features of many chronic diseases and complications, and have been linked to carcinogenesis. Cyclooxygenase 2 (COX-2), a rate-limiting enzyme for the synthesis of prostaglandins, plays important roles in physiology and pathology, but has been a source of controversy within the scientific and clinical community. However, recent work has shown that nuclear factor erythroid-2-related factor-2 (Nrf2) confers protection against oxidative stress. Furthermore, COX-2-dependent electrophile oxo-derivative (EFOX) molecules have been shown to act as anti-inflammatory mediators via activation of the Nrf2-dependent antioxidant response element (ARE). These studies have provided more insight into COX-2-mediated events. The function of all tissues, especially epithelial and endothelial tissues, declines with age, leading to the production of reactive oxygen species (ROS). COX-2 expression increases with aging in most tissues, due in part to ROS, chemical reactions, physical shearing, and dietary molecules. Here we discuss new findings related to COX-2 inflammatory and anti-inflammatory responses. Taken together, we hypothesize that COX-2 levels increase during the aging process because increasing levels of ROSs necessitate the involvement of COX-2-dependent EFOXs for anti-inflammation and Nrf2/ARE signaling for antioxidation. We also propose that COX-2 may act as an intrinsic biological aging clock due to its role in balancing inflammatory and anti-inflammatory responses.

Related Organizations
Keywords

Inflammation, Aging, Oxidative Stress, Cyclooxygenase 2, NF-E2-Related Factor 2, Humans, Reactive Oxygen Species, Models, Biological, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!