
pmid: 18199554
AbstractThe goal of this study was to characterize the effects of non–small cell lung carcinoma (NSCLC)-associated mutations in epidermal growth factor receptor (EGFR/ErbB1) and HER2 (ErbB2) on interactions with the dual tyrosine kinase inhibitor lapatinib. Biochemical studies show that commonly observed variants of EGFR [G719C, G719S, L858R, L861Q, and Δ746–750 (del15)] are enzyme activating, increasing the tyrosine kinase Vmax and increasing the Km(app) for ATP. The point mutations G719C and L861Q had minor effects on lapatinib Kis, whereas EGFR mutations L858R and del15 had a higher Ki for lapatinib than wild-type EGFR. Structural analysis of wild-type EGFR-lapatinib complexes and modeling of the EGFR mutants were consistent with these data, suggesting that loss of structural flexibility and possible stabilization of the active-like conformation could interfere with lapatinib binding, particularly to the EGFR deletion mutants. Furthermore, EGFR deletion mutants were relatively resistant to lapatinib-mediated inhibition of receptor autophosphorylation in recombinant cells expressing the variants, whereas EGFR point mutations had a modest or no effect. Of note, EGFR T790M, a receptor variant found in patients with gefitinib-resistant NSCLC, was also resistant to lapatinib-mediated inhibition of receptor autophosphorylation. Two HER2 insertional variants found in NSCLC were less sensitive to lapatinib inhibition than two HER2 point mutants. The effects of lapatinib on the proliferation of human NSCLC tumor cell lines expressing wild-type or variant EGFR and HER2 cannot be explained solely on the basis of the biochemical activity or receptor autophosphorylation in recombinant cells. These data suggest that cell line genetic heterogeneity and/or multiple determinants modulate the role played by EGFR/HER2 in regulating cell proliferation. [Cancer Res 2008;68(2):571–9]
Models, Molecular, Lung Neoplasms, Receptor, ErbB-2, Gefitinib, Lapatinib, CHO Cells, Genes, erbB-2, Polymorphism, Single Nucleotide, ErbB Receptors, Cricetulus, Carcinoma, Non-Small-Cell Lung, Cricetinae, Quinazolines, Animals, Humans, Mutant Proteins, Phosphorylation, Protein Kinase Inhibitors, Cell Proliferation, Protein Binding
Models, Molecular, Lung Neoplasms, Receptor, ErbB-2, Gefitinib, Lapatinib, CHO Cells, Genes, erbB-2, Polymorphism, Single Nucleotide, ErbB Receptors, Cricetulus, Carcinoma, Non-Small-Cell Lung, Cricetinae, Quinazolines, Animals, Humans, Mutant Proteins, Phosphorylation, Protein Kinase Inhibitors, Cell Proliferation, Protein Binding
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
