Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clays and Clay Miner...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clays and Clay Minerals
Article . 1977 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cristobalite Morphology and Oxygen Isotopic Composition Variation under Hydrothermal Alteration

Authors: M. L. Jackson; R. N. Clayton; Noriyuki Fujii; J. H. Henderson;

Cristobalite Morphology and Oxygen Isotopic Composition Variation under Hydrothermal Alteration

Abstract

AbstractFrom 2 to 28% opal-cristobalite was isolated from the 2–20 µm fraction of rhyolitic and andesitic tuffaceous pyroclastics from the Island of Honshu, Japan, where it had been formed in hydrothermal springs at temperatures of ∼25–170°C as calculated from the oxygen isotopic ratios (18O/16O). Three of the isolates gave X-ray powder diffractograms with strong peaks at 4.07 Å. Two of these also had very weak peaks at 4.32 Å indicative of the presence of traces of tridymite. The fourth isolate had a strong 4.11 Å cristobalite peak and a very weak 4.32 Å peak. The morphology, determined by the scanning electron microscope, varied with the formation temperature indicated by the oxygen isotopic ratio (δ18O), from spheroidal and spongy for the opal-cristobalite formed at ∼25°C (δ18O = 26.0‰) in contrast to angular irregular plates and prisms for that formed at ∼115°C (11.9‰), ∼135°C (7.9 ‰) and ∼170°C (6.8 ‰). The differences in δ18O values are attributed to variation in hydrothermal temperature, but some variability in oxygen isotopic composition of the water is possible. The field-measured temperatures related roughly with the calculated fractionation temperatures except in one site, while the contrast in cristobalite morphology related well to calculated low and high fractionation temperatures. Low-cristobalite of hydrothermal origin in New Zealand (δ18O = 9‰) had characteristic rounded grains with some evidence of platiness. Co-existing quartz grains (δ18O = 10‰) showed more subhedral and irregular prismatic morphology.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!