Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Audio Speech and Language Processing
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

The Deep Tensor Neural Network With Applications to Large Vocabulary Speech Recognition

Authors: Dong Yu 0001; Li Deng 0001; Frank Seide;

The Deep Tensor Neural Network With Applications to Large Vocabulary Speech Recognition

Abstract

The recently proposed context-dependent deep neural network hidden Markov models (CD-DNN-HMMs) have been proved highly promising for large vocabulary speech recognition. In this paper, we develop a more advanced type of DNN, which we call the deep tensor neural network (DTNN). The DTNN extends the conventional DNN by replacing one or more of its layers with a double-projection (DP) layer, in which each input vector is projected into two nonlinear subspaces, and a tensor layer, in which two subspace projections interact with each other and jointly predict the next layer in the deep architecture. In addition, we describe an approach to map the tensor layers to the conventional sigmoid layers so that the former can be treated and trained in a similar way to the latter. With this mapping we can consider a DTNN as the DNN augmented with DP layers so that not only the BP learning algorithm of DTNNs can be cleanly derived but also new types of DTNNs can be more easily developed. Evaluation on Switchboard tasks indicates that DTNNs can outperform the already high-performing DNNs with 4-5% and 3% relative word error reduction, respectively, using 30-hr and 309-hr training sets.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!