
AbstractThe leading edge of migrating cells contains rapidly translocating activated integrins associated with growing actin filaments that form ‘sticky fingers’ to sense extracellular matrix and guide cell migration. Here we utilized indirect bimolecular fluorescence complementation to visualize a molecular complex containing a Mig-10/RIAM/lamellipodin (MRL) protein (Rap1-GTP-interacting adaptor molecule (RIAM) or lamellipodin), talin and activated integrins in living cells. This complex localizes at the tips of growing actin filaments in lamellipodial and filopodial protrusions, thus corresponding to the tips of the ‘sticky fingers.’ Formation of the complex requires talin to form a bridge between the MRL protein and the integrins. Moreover, disruption of the MRL protein–integrin–talin (MIT) complex markedly impairs cell protrusion. These data reveal the molecular basis of the formation of ‘sticky fingers’ at the leading edge of migrating cells and show that an MIT complex drives these protrusions.
Talin, Integrins, Cells, Signal Transducing, 610, Adaptor Proteins, Membrane Proteins, Biological Sciences, 540, Article, Cell Movement, Humans, Biochemistry and Cell Biology, Generic health relevance, Carrier Proteins, Adaptor Proteins, Signal Transducing, Protein Binding
Talin, Integrins, Cells, Signal Transducing, 610, Adaptor Proteins, Membrane Proteins, Biological Sciences, 540, Article, Cell Movement, Humans, Biochemistry and Cell Biology, Generic health relevance, Carrier Proteins, Adaptor Proteins, Signal Transducing, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 84 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
