Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

zipper Nonmuscle Myosin-II Functions Downstream of PS2 Integrin in Drosophila Myogenesis and Is Necessary for Myofibril Formation

Authors: Bloor, James W.; Kiehart, Daniel P.;

zipper Nonmuscle Myosin-II Functions Downstream of PS2 Integrin in Drosophila Myogenesis and Is Necessary for Myofibril Formation

Abstract

Nonmuscle myosin-II is a key motor protein that drives cell shape change and cell movement. Here, we analyze the function of nonmuscle myosin-II during Drosophila embryonic myogenesis. We find that nonmuscle myosin-II and the adhesion molecule, PS2 integrin, colocalize at the developing muscle termini. In the paradigm emerging from cultured fibroblasts, nonmuscle actomyosin-II contractility, mediated by the small GTPase Rho, is required to cluster integrins at focal adhesions. In direct opposition to this model, we find that neither nonmuscle myosin-II nor RhoA appear to function in PS2 clustering. Instead, PS2 integrin is required for the maintenance of nonmuscle myosin-II localization and we show that the cytoplasmic tail of the beta(PS) integrin subunit is capable of mediating this PS2 integrin function. We show that embryos that lack zygotic expression of nonmuscle myosin-II fail to form striated myofibrils. In keeping with this, we demonstrate that a PS2 mutant that specifically disrupts myofibril formation is unable to mediate proper localization of nonmuscle myosin-II at the muscle termini. In contrast, embryos that lack RhoA function do generate striated muscles. Finally, we find that nonmuscle myosin-II localizes to the Z-line in mature larval muscle. We suggest that nonmuscle myosin-II functions at the muscle termini and the Z-line as an actin crosslinker and acts to maintain the structural integrity of the sarcomere.

Related Organizations
Keywords

Cytoplasm, Integrins, Avian Proteins, nonmuscle myosin-II, Cell Adhesion, Animals, Drosophila Proteins, Muscle, Skeletal, myofibrils, Molecular Biology, Crosses, Genetic, Myosin Type II, Microscopy, Confocal, RhoA GTPase, Muscles, Proteins, Cell Biology, Fibroblasts, Actins, Protein Structure, Tertiary, Microscopy, Fluorescence, Mutation, integrins, Drosophila, Integrin alpha Chains, Developmental Biology, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
hybrid