Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Abdominal Radiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Abdominal Radiology
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
SSRN Electronic Journal
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions

Authors: Ying, Hou; Mei-Ling, Bao; Chen-Jiang, Wu; Jing, Zhang; Yu-Dong, Zhang; Hai-Bin, Shi;

A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions

Abstract

PI-RADS score 3 is recognized as equivocal likelihood of clinically significant prostate cancer (csPCa) occurrence. We aimed to develop a Radiomics machine learning (RML)-based redefining score to screen out csPCa in equivocal PI-RADS score 3 category.Total of 263 patients with the dominant index lesion scored PI-RADS 3 who underwent biopsy and/or follow-up formed the primary cohort. One-step RML (RML-i) model integrated radiomic features of T2WI, DWI, and ADC images all together, and two-step RML (RML-ii) model integrated the three independent radiomic signatures from T2WI (T2WIRS), DWI (DWIRS), and ADC (ADCRS) separately into a regression model. The two RML models, as well as T2WIRS, DWIRS, and ADCRS, were compared using the receiver operating characteristic-derived area under the curve (AUC), calibration plot, and decision-curve analysis (DCA). Two radiologists were asked to give a subjective binary assessment, and Cohen's kappa statistics were calculated.A total of 59/263 (22.4%) csPCa were identified. Inter-reader agreement was moderate (Kappa = 0.435). The AUC of RML-i (0.89; 95% CI 0.88-0.90) is higher (p = 0.003) than that of RML-ii (0.87; 95% CI 0.86-0.88). The DCA demonstrated that the RML-i and RML-ii significantly improved risk prediction at threshold probabilities of csPCa at 20% to 80% compared with doing-none or doing-all by PI-RADS score 3 or stratifying by separated DWIRS, ADCRS, or T2WIRS.Our RML models have the potential to predict csPCa in PI-RADS score 3 lesions, thus can inform the decision making process of biopsy.

Related Organizations
Keywords

Machine Learning, Male, Biopsy, Humans, Prostatic Neoplasms, Magnetic Resonance Imaging, Retrospective Studies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!