
arXiv: 1610.03773
We analyse Very Long Baseline Interferometry (VLBI) observations of the blazar CGRaBS J0809+5341 using Bayesian inference methods. The observation was carried out at 5 GHz using 8 telescopes that form part of the European VLBI Network. Imaging and deconvolution using traditional methods imply that the blazar is unresolved. To search for source structure beyond the diffraction limit, we perform Bayesian model selection between three source models (point, elliptical Gaussian, and circular Gaussian). Our modelling jointly accounts for antenna-dependent gains and system equivalent flux densities. We obtain posterior distributions for the various source and instrumental parameters along with the corresponding uncertainties and correlations between them. We find that there is very strong evidence (>1e9 :1) in favour of elliptical Gaussian structure and using this model derive the apparent brightness temperature distribution of the blazar, accounting for uncertainties in the shape estimates. To test the integrity of our method, we also perform model selection on synthetic observations and use this to develop a Bayesian criterion for the minimum resolvable source size and consequently the maximum measurable brightness temperature for a given interferometer, dependent on the signal-to-noise ratio (SNR) of the data incorporating the aforementioned systematics. We find that calibration errors play an increasingly important role in determining the over-resolution limit for SNR>>100. We show that it is possible to exploit the resolving power of future VLBI arrays down to about 5 per cent of the size of the naturally-weighted restoring beam, if the gain calibration is precise to 1 per cent or less.
12 pages, 8 figures, accepted for publication in MNRAS
FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
