Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD + -dependent polynucleotide ligases

Authors: Mihaela-Carmen, Unciuleac; Yehuda, Goldgur; Stewart, Shuman;

Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD + -dependent polynucleotide ligases

Abstract

Significance This season marks the 50th anniversary of the discovery of polynucleotide ligases, the sine qua non enzymes of nucleic acid repair and the enabling reagents of molecular biology, reported in a series of seminal papers in PNAS. Ligases react with ATP or NAD + to form a covalent enzyme–adenylate intermediate in which AMP is linked via a P–N bond to a lysine. This work reports crystal structures of the Michaelis complexes of an exemplary ATP-dependent RNA ligase (bacteriophage T4 Rnl1) and an NAD + -dependent DNA ligase ( Escherichia coli LigA) that illuminate the chemical and structural basis for lysine adenylylation, via distinctive two-metal (ATP) and one-metal (NAD + ) mechanisms.

Related Organizations
Keywords

DNA Ligases, Protein Conformation, Escherichia coli Proteins, Lysine, RNA Ligase (ATP), Crystallography, X-Ray, NAD, Viral Proteins, Adenosine Triphosphate, Metals, Catalytic Domain, Multiprotein Complexes, Escherichia coli

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
bronze