
doi: 10.1007/bf01389001
This paper presents the analysis of a parallel formulation of depth-first search. At the heart of this parallel formulation is a dynamic work-distribution scheme that divides the work between different processors. The effectiveness of the parallel formulation is strongly influenced by the work-distribution scheme and the target architecture. We introduce the concept of isoefficiency function to characterize the effectiveness of different architectures and work-distribution schemes. Many researchers considered the ring architecture to be quite suitable for parallel depth-first search. Our analytical and experimental results show that hypercube and shared-memory schemes are significantly better. The analysis of previously known work-distribution schemes motivated the design of substantially improved schemes for ring and shared-memory architectures. In particular, we present a work-distribution algorithm which guarantees close to optimal performance on a shared-memory/C-network-with-message-combining architecture (e.g. RP3). Much of the analysis presented in this paper is applicable to other parallel algorithms in which work is dynamically shared between different processors (e.g., parallel divide-and-conquer algorithms). The concept of isoefficiency is useful in characterizing the scalability of a variety of parallel algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 109 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
