Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Society of Nephrology
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modulation of Soluble Receptor for Advanced Glycation End Products by Angiotensin-Converting Enzyme-1 Inhibition in Diabetic Nephropathy

Authors: Forbes, Josephine M.; Thorpe, Suzanne R.; Thallas-Bonke, Vicki; Pete, Josefa; Thomas, Merlin C.; Deemer, Elizabeth R.; Bassal, Sahar; +6 Authors

Modulation of Soluble Receptor for Advanced Glycation End Products by Angiotensin-Converting Enzyme-1 Inhibition in Diabetic Nephropathy

Abstract

Recent studies have identified that first-line renoprotective agents that interrupt the renin-angiotensin system not only reduce BP but also can attenuate advanced glycation end product (AGE) accumulation. This study used in vitro, preclinical, and human approaches to explore the potential effects of these agents on the modulation of the receptor for AGE (RAGE). Bovine aortic endothelial cells that were exposed to the angiotensin-converting enzyme inhibitor (ACEi) ramiprilat in the presence of high glucose demonstrated a significant increase in soluble RAGE (sRAGE) secreted into the medium. In streptozotocin-induced diabetic rats, ramipril treatment (ACEi) at 3 mg/L for 24 wk reduced the accumulation of skin collagen-linked carboxymethyllysine and pentosidine, as well as circulating and renal AGE. Renal gene upregulation of total RAGE (all three splice variants) was observed in ACEi-treated animals. There was a specific increase in the gene expression of the splice variant C-truncated RAGE (sRAGE). There were also increases in sRAGE protein identified within renal cells with ACEi treatment, which showed AGE-binding ability. This was associated with decreases in renal full-length RAGE protein from ACEi-treated rats. Decreases in plasma soluble RAGE that were significantly increased by ACEi treatment were also identified in diabetic rats. Similarly, there was a significant increase in plasma sRAGE in patients who had type 1 diabetes and were treated with the ACEi perindopril. Complexes between sRAGE and carboxymethyllysine were identified in human and rodent diabetic plasma. It is postulated that ACE inhibition reduces the accumulation of AGE in diabetes partly by increasing the production and secretion of sRAGE into plasma.

Country
Australia
Keywords

Glycation End Products, Advanced, Male, Kidney Cortex, Blotting, Western, Angiotensin-Converting Enzyme Inhibitors, Arginine, 616, Animals, Humans, Immunoprecipitation, Diabetic Nephropathies, Aorta, Cells, Cultured, DNA Primers, 2727 Nephrology, Lysine, Urology & Nephrology, Immunohistochemistry, Alternative Splicing, Microscopy, Fluorescence, Cattle, Collagen, Endothelium, Vascular

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    197
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
197
Top 10%
Top 10%
Top 1%
bronze