Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Parasites & Vect...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Parasites & Vectors
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Parasites & Vectors
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Parasites & Vectors
Article . 2011
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hemelipoglycoprotein from the ornate sheep tick, Dermacentor marginatus: structural and functional characterization

Authors: Sterba Jan; Dupejova Jarmila; Vancova Marie; Grubhoffer Libor;

Hemelipoglycoprotein from the ornate sheep tick, Dermacentor marginatus: structural and functional characterization

Abstract

Abstract Background Tick carrier proteins are able to bind, transport, and store host-blood heme, and thus they function also as antioxidants. Nevertheless, the role of carrier proteins in ticks is not fully understood. Some of them are found also in tick males which do not feed on hosts to such an extent such as females (there are differences in male feeding in different tick species) and thus they are not dealing with such an excess of heme; some of the carrier proteins were found in salivary glands where the processing of blood and thus release of heme does not occur. Besides, the carrier proteins bind relatively low amounts of heme (in one case only two molecules of heme per protein) compared to their sizes (above 200 kDa). The main aim of this study is the biochemical characterization of a carrier protein from the ornate sheep tick Dermacentor marginatus, hemelipoglycoprotein, with emphasis on its size in native conditions, its glycosylation and identification of its modifying glycans, and examining its carbohydrate-binding specificity. Results Hemelipoglycoprotein from D. marginatus plasma was purified in native state by immunoprecipitation and denatured using electroelution from SDS-PAGE separated plasma. The protein (290 kDa) contains two subunits with molecular weights 100 and 95 kDa. It is glycosylated by high-mannose and complex N-glycans HexNAc2Hex9, HexNAc2Hex10, HexNAc4Hex7, and HexNAc4Hex8. The purified protein is able to agglutinate red blood cells and has galactose- and mannose-binding specificity. The protein is recognized by antibodies directed against plasma proteins with hemagglutination activity and against fibrinogen-related lectin Dorin M from the tick Ornithodoros moubata. It forms high-molecular weight complexes with putative fibrinogen-related proteins and other unknown proteins under native conditions in tick plasma. Feeding does not increase its amounts in male plasma. The hemelipoglycoprotein was detected also in hemocytes, salivary glands, and gut. In salivary glands, the protein was present in both glycosylated and nonglycosylated forms. Conclusion A 290 kDa hemelipoglycoprotein from the tick Dermacentor marginatus, was characterized. The protein has two subunits with 95 and 100 kDa, and bears high-mannose and complex N-linked glycans. In hemolymph, it is present in complexes with putative fibrinogen-related proteins. This, together with its carbohydrate-binding activity, suggests its possible involvement in tick innate immunity. In fed female salivary glands, it was found also in a form corresponding to the deglycosylated protein.

Keywords

Hemeproteins, Male, Glycosylation, Lipoproteins, Infectious and parasitic diseases, RC109-216, Cross Reactions, Antibodies, Animals, Immunoprecipitation, Ornithodoros, Dermacentor, Glycoproteins, Sheep, Research, Molecular Weight, Protein Subunits, Infectious Diseases, Hemagglutinins, Carbohydrate Metabolism, Parasitology, Electrophoresis, Polyacrylamide Gel, Female, Carrier Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
gold