Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

tipE Regulates Na+-dependent Repetitive Firing in Drosophila Neurons

Authors: Hodges, Dianne D; Lee, Daewoo; Preston, Charles F; Boswell, Kevin; Hall, Linda M; O'Dowd, Diane K;

tipE Regulates Na+-dependent Repetitive Firing in Drosophila Neurons

Abstract

The tipE gene, originally identified by a temperature-sensitive paralytic mutation in Drosophila, encodes a transmembrane protein that dramatically influences sodium channel expression in Xenopus oocytes. There is evidence that tipE also modulates sodium channel expression in the fly; however, its role in regulating neuronal excitability remains unclear. Here we report that the majority of neurons in both wild-type and tipE mutant (tipE-) embryo cultures fire sodium-dependent action potentials in response to depolarizing current injection. However, the percentage of tipE- neurons capable of firing repetitively during a sustained depolarization is significantly reduced. Expression of a tipE+ transgene, in tipE- neurons, restores repetitive firing to wild-type levels. Analysis of underlying currents reveals a slower rate of repolarization-dependent recovery of voltage-gated sodium currents during repeated activation in tipE- neurons. This phenotype is also rescued by expression of the tipE+ transgene. These data demonstrate that tipE regulates sodium-dependent repetitive firing and recovery of sodium currents during repeated activation. Furthermore, the duration of the interstimulus interval necessary to fire a second full-sized action potential is significantly longer in single- versus multiple-spiking transgenic neurons, suggesting that a slow rate of recovery of sodium currents contributes to the decrease in repetitive firing in tipE- neurons.

Country
United States
Related Organizations
Keywords

Sodium: metabolism, Mutagenesis: physiology, Action Potentials, Gene Expression, Genetically Modified, Sodium Channels, Animals, Genetically Modified, Animals, Drosophila Proteins, RNA, Messenger, Transgenes, Transgenes: physiology, Neurons: cytology, Neurons, Gene Expression: physiology, Sodium, Membrane Proteins: genetics, Membrane Proteins, Cell Differentiation, Action Potentials: physiology, Messenger: analysis, Phenotype, Mutagenesis, physiology, RNA, Drosophila, Sodium Channels: genetics, metabolism

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
Green
bronze