Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 1996
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins

Authors: Kim, E Kim, Eunjoon; Cho, KO Cho, Kyungok; Rothschild, A Rothschild, A; Sheng, M Sheng, M;

Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins

Abstract

Chapsyn-110, a novel membrane-associated putative guanylate kinase (MAGUK) that binds directly to N-methyl-D-aspartate (NMDA) receptor and Shaker K+ channel subunits, is 70%-80% identical to, and shares an identical domain organization with, PSD-95/SAP90 and SAP97. In rat brain, chapsyn-110 protein shows a somatodendritic expression pattern that overlaps partly with PSD-95 but that contrasts with the axonal distribution of SAP97. Chapsyn-110 associates tightly with the postsynaptic density in brain, and mediates the clustering of both NMDA receptors and K+ channels in heterologous cells. Indeed, chapsyn-110 and PSD-95 can heteromultimerize with each other and are recruited into the same NMDA receptor and K+ channel clusters. Thus, chapsyn-110 and PSD-95 may interact at postsynaptic sites to form a multimeric scaffold for the clustering of receptors, ion channels, and associated signalling proteins.

Keywords

Potassium Channels, 572, Neuroscience(all), Molecular Sequence Data, Receptor Aggregation, Intracellular Signaling Peptides and Proteins, Brain, Membrane Proteins, Nerve Tissue Proteins, Immunohistochemistry, Receptors, N-Methyl-D-Aspartate, Rats, Discs Large Homolog 1 Protein, Animals, Tissue Distribution, Amino Acid Sequence, Rabbits, Nucleoside-Phosphate Kinase, Disks Large Homolog 4 Protein, Guanylate Kinases, Adaptor Proteins, Signal Transducing, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    517
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
517
Top 1%
Top 1%
Top 0.1%
hybrid