
pmid: 36063504
A plethora of healthcare data is produced every day due to the proliferation of prominent technologies such as Internet of Medical Things (IoMT). Digital-driven smart devices like wearable watches, wristbands and bracelets are utilized extensively in modern healthcare applications. Mining valuable information from the data distributed at the owners' level is useful, but it is challenging to preserve data privacy. Federated learning (FL) has swiftly surged in popularity due to its efficacy in dealing privacy vulnerabilities. Recent studies have demonstrated that Gradient Inversion Attack (GIA) can reconstruct the input data by leaked gradients, previous work demonstrated the achievement of GIA in very limited scenarios, such as the label repetition rate of the target sample being low and batch sizes being smaller than 48. In this paper, a novel method of End-to-End Gradient Inversion (E2EGI) is proposed. Compared to the state-of-the-art method, E2EGI's Minimum Loss Combinatorial Optimization (MLCO) has the ability to realize reconstructed samples with higher similarity, and the Distributed Gradient Inversion algorithm can implement GIA with batch sizes of 8 to 256 on deep network models (such as ResNet-50) and ImageNet datasets. A new Label Reconstruction algorithm is developed that relies only on the gradient information of the target model, which can achieve a label reconstruction accuracy of 81% in one batch sample with a label repetition rate of 96%, a 27% improvement over the state-of-the-art method. This proposed work can underpin data security assessments for healthcare federated learning.
Privacy, Internet of Things, Humans, Wakefulness, Algorithms
Privacy, Internet of Things, Humans, Wakefulness, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
