Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2000 . Peer-reviewed
Data sources: Crossref
Development
Article . 2000
MPG.PuRe
Article . 2000
Data sources: MPG.PuRe
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Drosophila wing vein patterning: net encodes a bHLH protein repressing rhomboid and is repressed by rhomboid-dependent Egfr signalling

Authors: Brentrup, D.; Lerch, H.; Jaeckle, H.; Noll, M.;

Regulation of Drosophila wing vein patterning: net encodes a bHLH protein repressing rhomboid and is repressed by rhomboid-dependent Egfr signalling

Abstract

ABSTRACT The stereotyped pattern of veins in the Drosophila wing is generated in response to local EGF signalling. Mutations in the rhomboid (rho) gene, which encodes a sevenpass membrane protein required to enhance signalling transmitted by the EGF receptor (Egfr), inhibit vein development and disrupt the vein pattern. By contrast, net mutations produce ectopic veins in intervein regions. We have cloned the net gene and show that it encodes a basic HLH protein that probably acts as a transcriptional repressor. net and rho are expressed in mutually exclusive patterns during the development of the wing imaginal disc. Lack of net activity causes rho expression to expand, and vice versa. Furthermore, ectopic expression of net or rho results in their mutual repression and thus suppresses vein formation or generates tube-like wings composed of vein-like tissue. Egfr signalling and net exert mutually antagonising activities during the specification of vein versus intervein fate. While Egfr signalling represses net transcription, net exhibits a two-tiered control by repressing rho transcription and interfering with Egfr signalling downstream of Rho. Our results further suggest that net is required to maintain intervein development by restricting Egfr signalling, which promotes vein development, to the Net-free vein regions of the wing disc.

Related Organizations
Keywords

Base Sequence, Sequence Homology, Amino Acid, Helix-Loop-Helix Motifs, Molecular Sequence Data, Pupa, Gene Expression Regulation, Developmental, Membrane Proteins, ErbB Receptors, Repressor Proteins, Chromosome Walking, Insect Hormones, Basic Helix-Loop-Helix Transcription Factors, Animals, Drosophila Proteins, Humans, Wings, Animal, Amino Acid Sequence, Sequence Alignment, Body Patterning, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!