
Heuristic search algorithms, which are characterized by faster convergence rates and can obtain better solutions than the traditional mathematical methods, are extensively used in engineering optimizations. In this paper, a newly developed elitist-mutated particle swarm optimization (EMPSO) technique and an improved gravitational search algorithm (IGSA) are successively applied to parameter estimation problems of Muskingum flood routing models. First, the global optimization performance of the EMPSO and IGSA are validated by nine standard benchmark functions. Then, to further analyse the applicability of the EMPSO and IGSA for various forms of Muskingum models, three typical structures are considered: the basic two-parameter linear Muskingum model (LMM), a three-parameter nonlinear Muskingum model (NLMM) and a four-parameter nonlinear Muskingum model which incorporates the lateral flow (NLMM-L). The problems are formulated as optimization procedures to minimize the sum of the squared deviations (SSQ) or the sum of the absolute deviations (SAD) between the observed and the estimated outflows. Comparative results of the selected numerical cases (Case 1-3) show that the EMPSO and IGSA not only rapidly converge but also obtain the same best optimal parameter vector in every run. The EMPSO and IGSA exhibit superior robustness and provide two efficient alternative approaches that can be confidently employed to estimate the parameters of both linear and nonlinear Muskingum models in engineering applications.
Models, Statistical, Nonlinear Dynamics, Science, Q, R, Medicine, Computer Simulation, Algorithms, Floods, Research Article
Models, Statistical, Nonlinear Dynamics, Science, Q, R, Medicine, Computer Simulation, Algorithms, Floods, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
