
In response to growing concerns regarding mosquito-borne diseases, scientists are developing novel systems of vector control. Early examples include Oxitec's OX513A genetically-engineered mosquito and MosquitoMate's Wolbachia-infected mosquito, and systems using 'gene-drive' are in development. Systems based on genetic engineering are controversial and institutions around the world are grappling with the question of who should have a say in how such technologies are field-tested and used. Based on media coverage and public records, we created comparative timelines of the efforts of Oxitec and MosquitoMate to navigate federal and local governance and bring their products to market in the United States. We analyze these timelines with particular attention to the role of public input in technology governance. These cases illustrate how governance of technology in the US is diverse, complex, and opaque. Further, the public response to proposed field trials of the Oxitec product highlights inconsistencies between public expectations for governance and actual practice. As gene-drive mosquito control products develop, both federal and local agencies will find their legitimacy tested without a better procedure for transparently integrating public input.
Mosquito Control, Clinical Sciences, Gene Drive Technology, United States, mosquito control, Vector-Borne Diseases, Good Health and Well Being, Medical Microbiology, Tropical Medicine, Public Health and Health Services, gene drive, Animals, community and stakeholder engagement, technology governance, Wolbachia, Research Article
Mosquito Control, Clinical Sciences, Gene Drive Technology, United States, mosquito control, Vector-Borne Diseases, Good Health and Well Being, Medical Microbiology, Tropical Medicine, Public Health and Health Services, gene drive, Animals, community and stakeholder engagement, technology governance, Wolbachia, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
