
doi: 10.1385/mn:28:1:65
pmid: 14514986
Various mutations in humans and animals lead to the selective and progressive degeneration of motoneurons, resulting in muscular weakness, subsequent paralysis, and death (1-3). Amyotrophic lateral sclerosis (ALS) is the most common adult human motoneuron disease, but the vast majority of sporadic and familial cases of ALS are still of unknown origin (4). Murine models of motoneuron diseases, derived from spontaneous mutations in the colonies, have been known for half a century. Prior to the first identifications of the mutated proteins in human ALS, they have largely been used to explore the disease etiology. The chromosomal localization of these mutations does not favor a genetic similarity between these murine models and the few human forms of the disease for which the mutation or the chromosomal localization is known. Yet the fact that most human ALS cases are of unknown etiology and the recent discovery of molecules with no known role in motoneuron survival (5-7), indicate that these murine mutants may still contribute to the understanding of motoneuronal degenerative processes. This can be exemplified by the work performed on the wobbler mouse, one of the oldest and most extensively studied models, which is reviewed here.
Mice, Inbred C57BL, Disease Models, Animal, Mice, Mice, Neurologic Mutants, Amyotrophic Lateral Sclerosis, Mutation, Animals, Humans, Neurodegenerative Diseases
Mice, Inbred C57BL, Disease Models, Animal, Mice, Mice, Neurologic Mutants, Amyotrophic Lateral Sclerosis, Mutation, Animals, Humans, Neurodegenerative Diseases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 54 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
