<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractAn iron catalyzed reaction for the selective transformation of thiols (‐SH) to sulfinamides (‐SONH2) by a direct transfer of ‐O and free ‐NH2 groups has been developed. The reaction operates under mild conditions using a bench stable hydroxylamine derived reagent, exhibits broad functional group tolerance, is scalable and proceeds without the use of any precious metal catalyst or additional oxidant. This novel, practical reaction leads to the formation of two distinct new bonds (S=O and S−N) in a single step to chemoselectively form valuable, unprotected sulfinamide products. Preliminary mechanistic studies implicate the role of the alcoholic solvent as an oxygen atom donor.
sustainable catalysis; thiols; sulfinamides; Iron; amino-oxidation, sustainable catalysis, info:eu-repo/classification/ddc/540, Iron, amino-oxidation, sulfinamides, 540, Research Articles, thiols
sustainable catalysis; thiols; sulfinamides; Iron; amino-oxidation, sustainable catalysis, info:eu-repo/classification/ddc/540, Iron, amino-oxidation, sulfinamides, 540, Research Articles, thiols
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 56 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |