Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fluid Mec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fluid Mechanics
Article . 1994 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1994
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On one-dimensional flow of a conducting gas between electrodes – with application to MHD thrusters

On one-dimensional flow of a conducting gas between electrodes -- with application to MHD thrusters
Authors: Cowley, M. D.; Horlock, J. H.;

On one-dimensional flow of a conducting gas between electrodes – with application to MHD thrusters

Abstract

Inviscid, adiabatic, one-dimensional flow of a conducting gas in the presence of crossed electric and magnetic fields is investigated for the case where the magnetic field is generated by the current being supplied to the gas. The electrode geometry and the connections to the electrical power supply are such that the magnetic field falls to zero at the downstream end of the MHD duct. The analysis allows for magnetic Reynolds number rm to be anywhere in the range 0 to ∞ The main part of the investigation is restricted to consideration of ducts with constant spacing between electrodes.The way in which the density of the gas varies along the duct with the changing magnetic field is analysed generally and the results are then applied to the case where gas is fed to the MHD duct from high pressure in a plenum chamber and where the duct exhausts to a region of negligible pressure. If the flow is choked by the converging entry to the duct and the magnetic Reynolds number is moderate to high, the main electromagnetic effect is for the j × B forces to accelerate the gas to supersonic speeds. As rm is reduced, ohmic heating becomes more important, and it may cause the flow to be choked at exit from the duct, giving rise to a reduction in mass flow. For certain ranges of rm and ratio of initial magnetic pressure to plenum-chamber pressure the flow may choke at a sonic point within the duct itself, while accelerating from subsonic to supersonic through the point.Some illustrative examples of how properties vary with distance along the duct have been computed and the consequences of the analysis for MHD thrusters are explored. The magnetic forces will augment thrust per unit cross-sectional area, the essential measure of this being the drop in magnetic pressure along the duct, but there is an upper limit on the ratio of magnetic pressure to plenum-chamber pressure for flows to be possible. Flow at low magnetic Reynolds number is favoured if the object is to increase specific thrust by reducing mass flow through the duct.

Related Organizations
Keywords

Magnetohydrodynamics and electrohydrodynamics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!