Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ISPRS Journal of Pho...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ISPRS Journal of Photogrammetry and Remote Sensing
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ChangeMask: Deep multi-task encoder-transformer-decoder architecture for semantic change detection

Authors: Zhuo Zheng; Yanfei Zhong; Shiqi Tian; Ailong Ma; Liangpei Zhang;

ChangeMask: Deep multi-task encoder-transformer-decoder architecture for semantic change detection

Abstract

Abstract Multi-temporal high spatial resolution earth observation makes it possible to detect complex urban land surface changes, which is a significant and challenging task in remote sensing communities. Previous works mainly focus on binary change detection (BCD) based on modern technologies, e.g., deep fully convolutional network (FCN), whereas the deep network architecture for semantic change detection (SCD) is insufficiently explored in current literature. In this paper, we propose a deep multi-task encoder-transformer-decoder architecture (ChangeMask) designed by exploring two important inductive biases: sematic-change causal relationship and temporal symmetry. ChangeMask decouples the SCD into a temporal-wise semantic segmentation and a BCD, and then integrates these two tasks into a general encoder-transformer-decoder framework. In the encoder part, we design a semantic-aware encoder to model the semantic-change causal relationship. This encoder is only used to learn semantic representation and then learn change representation from semantic representation via a later transformer module. In this way, change representation can constrain semantic representation during training, which introduces a regularization to reduce the risk of overfitting. To learn a robust change representation from semantic representation, we propose a temporal-symmetric transformer (TST) to guarantee temporal symmetry for change representation and keep it discriminative. Based on the above semantic representation and change representation, we adopt simple multi-task decoders to output semantic change map. Benefiting from the differentiable building blocks, ChangeMask can be trained by a multi-task loss function, which significantly simplifies the whole pipeline of applying ChangeMask. The comprehensive experimental results on two large-scale SCD datasets confirm the effectiveness and superiority of ChangeMask in SCD. Besides, to demonstrate the potential value in real-world applications, e.g., automatic urban analysis and decision-making, we deploy the ChangeMask to map a large geographic area covering 30 km2 with 300 million pixels. Code will be made available.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    215
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
215
Top 0.1%
Top 1%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!