Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Eye Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Eye Research
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neuroprotection of photoreceptors by direct delivery of erythropoietin to the retina of the retinal degeneration slow mouse

Authors: Tonia S. Rex; Kishore Kodali; Ying Wong; Shayla Merry;

Neuroprotection of photoreceptors by direct delivery of erythropoietin to the retina of the retinal degeneration slow mouse

Abstract

The primary objectives of this study were to determine if erythropoietin (EPO) is neuroprotective to the photoreceptors in the retinal degeneration slow (rds) mouse in the absence of an increase in hematocrit and to determine if deglycosylated EPO (DEPO) is less neuroprotective. We performed subretinal injections of 10U EPO, DEPO or hyperglycosylated EPO (HEPO) in postnatal day 7 rds mice. Whole eye EPO levels were quantified by ELISA at specified time points post-injection. TUNEL analysis, hematocrit, and immunohistochemistry were performed at postnatal day 20. Half of the amount of EPO measured immediately after injection was detected less than 1 h later. Twenty four hours later, EPO levels were 1000 times lower than the amount originally detected. Uninjected rds mice contained 36 +/- 2 TUNEL-positive cells/mm retina and PBS injected mice contained 17 +/- 3 TUNEL-positive cells/mm retina. EPO, DEPO, and HEPO treated rds retinas contained 5 +/- 2, 9 +/- 2, and 3 +/- 1 TUNEL-positive cells/mm retina, respectively. The hematocrit was 43% in control and 41% in treated rds mice Previous studies have shown neuroprotection of the retina by treatment with as little as 24-39 mU EPO/mg total protein in the eye. In this study, we detected 40 mU/mg EPO in the eye 11 h after injection of 10 U EPO. Treatment with all forms of EPO tested was neuroprotective to the photoreceptors without a concomitant increase in hematocrit.

Keywords

Glycosylation, Membrane Glycoproteins, Green Fluorescent Proteins, Apoptosis, Enzyme-Linked Immunosorbent Assay, Nerve Tissue Proteins, Dependovirus, Immunohistochemistry, Mice, Mutant Strains, Injections, Disease Models, Animal, Mice, Neuroprotective Agents, Animals, Newborn, Hematocrit, Intermediate Filament Proteins, In Situ Nick-End Labeling, Animals, Darbepoetin alfa, Erythropoietin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze