Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2003
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

NFATc2-Mediated Repression of Cyclin-Dependent Kinase 4 Expression

Authors: Steven J. Burakoff; Steven J. Burakoff; Shairaz Baksh; David E. Fisher; Jaime F. Modiano; Jaime F. Modiano; James A. DeCaprio; +4 Authors

NFATc2-Mediated Repression of Cyclin-Dependent Kinase 4 Expression

Abstract

The calcineurin-regulated transcription factor, nuclear factor of activated T cells (NFAT), controls many aspects of T cell function. Here, we demonstrate that the calcineurin/NFAT pathway negatively regulates the expression of cyclin-dependent kinase 4 (CDK4). A canonical NFAT binding site was identified and found to be sensitive to calcium signals, FK506/CsA, and histone deacetylase activity and to not require AP-1. Ectopic expression of NFATc2 inhibited the basal activity of the human CDK4 promoter. Additionally, both calcineurin Aalpha(-/-) and NFATc2(-/-) mice had elevated protein levels of CDK4, confirming a negative regulatory role for the calcineurin/NFAT pathway. This pathway may thus regulate the expression of CDK4 at the transcriptional level and control how cells re-enter a resting, nonproliferative state.

Keywords

Binding Sites, Base Sequence, Cyclin-Dependent Kinase 4, Mice, Transgenic, Cell Biology, Exons, Chromatin, Cyclin-Dependent Kinases, Histone Deacetylases, DNA-Binding Proteins, Jurkat Cells, Mice, Gene Expression Regulation, Genes, Reporter, Cyclosporine, Animals, Humans, Lymphocytes, Cloning, Molecular, Luciferases, Molecular Biology, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    159
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
159
Top 10%
Top 10%
Top 10%
hybrid