
pmid: 12711555
The diverse physiological effects of dopamine are mediated by multiple receptor systems. The dDA1 represents one of the Drosophila dopamine receptors that activate the cAMP cascade. To gain insight into the role of dDA1, we generated a polyclonal antibody against the unique sequence in dDA1 and investigated dDA1 distribution in the central nervous system (CNS) of Drosophila melanogaster. In both larval and adult CNS pronounced dDA1 immunoreactivity was present in the neuropil of the mushroom bodies, a brain structure crucial for learning and memory in insects, and four unpaired neurons in each thoracic segment. In addition, the larval abdominal ganglion contained two dDA1 cells in each segment. This expression pattern appeared to be maintained in the condensed adult abdominal ganglion although the precise number and the intensity of staining were somewhat variable. The adult CNS also exhibited intense dDA1 immunoreactivity in the central complex, a structure controlling higher-order motor function, moderate expression in several neurosecretory cells, and weak staining in two unpaired neurons in the mesothoracic neuromere. The dDA1 expression in these areas was only detected in adult, but not in third instar larval CNS.
Central Nervous System, Gene Expression Profiling, Brain, Fluorescent Antibody Technique, Membrane Proteins, Receptors, Dopamine, Drosophila melanogaster, Larva, Animals, Drosophila Proteins
Central Nervous System, Gene Expression Profiling, Brain, Fluorescent Antibody Technique, Membrane Proteins, Receptors, Dopamine, Drosophila melanogaster, Larva, Animals, Drosophila Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 101 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
