
Cartan [1 ] had proved that a Riemannian Manifold is of constant curvature if R(X,Y, X,Z) = 0 for every orthonormal triplet X,Y and Z. Graves and Nomizu [2 ] have extended this result to Pseudo-Riemannian Manifold. In the present paper this result has been extended to Kahler Manifolds with indefinite metric by proving that: “A Pseudo-Kahler manifold (M, J) is of constant Holomorphic Sectional Curvature if R(X,Y,X,JX) = 0 whenever X,Y and JX are ortbonormal” . A result of Tannö [4 ] on Almost Hermitian Manifold has also been extended to Pseudo-Kahler Manifolds by proving that a criterian for constancy of Holomorphic Sectio nal Curvature is that R(X,JX) X is proportional to JX.
Matematik, Mathematical Sciences, holomorphic;Pseudo-Kähler;manifolds
Matematik, Mathematical Sciences, holomorphic;Pseudo-Kähler;manifolds
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
